SENTIMENT TAHLIL DOIRASIDA OLIB BORILGAN ILMIY QARASHLAR TADQIQI

Авторы

  • Raximov Xasanboy Komiljonovich Автор

Ключевые слова:

сентиментальный анализ, обработка (изменение) естественного языка социальные сети, методика иследования, методика тем.

Аннотация

Анализ тональности, один из направлений исследований в области обработки естественного языка, привлён внимание многих исследователей, и в этой области публикуется все больше научных работ. Многие обзоры литературы по анализу сентимент, включая методы, техники и подготовлены с использованием различных исследовательских методологий и инструментов. Но не посвященного эволюции методов иследования, а также анализ сентимента.

Библиографические ссылки

Abbasi A, France S, Zhang Z, Chen H. Selecting attributes for sentiment classification using feature relation networks. IEEE Trans Knowl Data Eng. 2011;23(3):447–462. http://doi.org/10.1109/TKDE.2010.110. [CrossRef] [Google Scholar]

Abdullah NSD, Zolkepli IA (2017) Sentiment analysis of online crowd input towards Brand Provocation in Facebook, Twitter, and Instagram. In: Proceedings of the international conference on big data and internet of thing, association for computing machinery, pp 67–74. http://doi.org/10.1145/3175684.3175689

Abo MEM, Idris N, Mahmud R, Qazi A, Hashem IAT, Maitama JZ, et al. A multi-criteria approach for Arabic dialect sentiment analysis for online reviews: exploiting optimal machine learning algorithm selection. Sustainability. 2021;13(18):10018. http://doi.org/10.3390/su131810018. [CrossRef] [Google Scholar]

Abrahams AS, Jiao J, Wang GA, Fan W. Vehicle defect discovery from social media. Decis Support Syst. 2012;54(1):87–97. http://doi.org/10.1016/j.dss.2012.04.005. [CrossRef] [Google Scholar]

Acheampong FA, Nunoo-Mensah H, Chen W. Transformer models for text-based emotion detection: a review of BERT-based approaches. Artif Intell Rev. 2021;54(8):5789–5829. http://doi.org/10.1007/s10462-021-09958-2 [CrossRef] [Google Scholar]

Adak A, Pradhan B, Shukla N. Sentiment analysis of customer reviews of food delivery services using deep learning and explainable artificial intelligence: systematic review. Foods. 2022;11(10):1500. http://doi.org/10.3390/foods11101500 . [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Agüero-Torales MM, Salas JIA, López-Herrera AG. Deep learning and multilingual sentiment analysis on social media data: an overview. Appl Soft Comput. 2021; 107:107373. http://doi.org/10.1016/j.asoc.2021.107373. [CrossRef] [Google Scholar]

Ahuja R, Rastogi H, Choudhuri A, Garg B (2015) Stock market forecast using sentiment analysis. In: 2015 2nd International conference on computing for sustainable global development, INDIACom 2015, Bharati Vidyapeeth, New Delhi, pp 1008–1010. http://doi.org/10.48550/arXiv.2204.05783

Ain QT, Ali M, Riaz A, Noureen A, Kamranz M, Hayat B, et al. Sentiment analysis using deep learning techniques: a review. Int J Adv Comput Sci Appl. 2017;8(6):424–433. http://doi.org/10.14569/ijacsa.2017.080657 . [CrossRef] [Google Scholar]

Al-Ayyoub M, Nuseir A, Alsmearat K, Jararweh Y, Gupta B. Deep learning for Arabic NLP: a survey. J Comput Sci. 2018; 26:522–531.

http://doi.org/10.1016/j.jocs.2017.11.011 . [CrossRef] [Google Scholar]

Al-Ayyoub M, Khamaiseh AA, Jararweh Y, Al-Kabi MN. A comprehensive survey of Arabic sentiment analysis. Inf Process Manag. 2019;56(2):320–342. http://doi.org/10.1016/j.ipm.2018.07.006. [CrossRef] [Google Scholar]

Al-Dabet S, Tedmori S, AL-Smadi M. Enhancing Arabic aspect-based sentiment analysis using deep learning models. Comput Speech Lang. 2021; 69:1224. http://doi.org/10.1016/j.csl.2021.101224. [CrossRef] [Google Scholar]

Опубликован

2024-06-24

Выпуск

Раздел

SECTION 6. Issues of modern linguistics.

Как цитировать

SENTIMENT TAHLIL DOIRASIDA OLIB BORILGAN ILMIY QARASHLAR TADQIQI. (2024). «СОВРЕМЕННЫЕ ТЕХНОЛОГИИ КОМПЬЮТЕРНОЙ ЛИНГВИСТИКИ», 2(22.04), 603-607. https://myscience.uz/index.php/linguistics/article/view/140